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Received 14 February 1977, in final form 12 April 1977 

Abstract. Existence with probability one of the thermodynamic limit for the free energy 
density of a class of classical and quantum quenched random spin systems is proved using 
strong laws of large numbers. When the control on the randomness is strong enough, the 
infinite-volume free energy so obtained is shown to be equal, with probability one, to that 
derived from a prescription originally due to Brout. Particular mean-field models are then 
studied in detail. Similar arguments are pointed out concerning the corresponding ther- 
modynamic functions, and are then applied to the existence problem of phase transitions in 
quenched random systems with continuous internal symmetry groups, in particular to those 
models recently proposed to describe the spin glass phenomenon, like the Edwards- 
Anderson model and its various classical and quantum extensions. 

1. Introduction 

Starting from a new prescription for evaluating free energies, Brout proposed, a little 
less than twenty years ago (Brout 1959), a new statistical mechanical theory for a class 
of random systems where magnetic ions are frozen at random positions in some 
non-magnetic host metals. The claim was indeed that, since such random materials do 
not correspond to ordinary thermal equilibrium, but rather to some metastable state, 
the physical free energy should not be evaluated by taking the logarithm of their 
averaged partition function, but rather by calculating the average over all ion configura- 
tions of the conditional free energy related to a fixed configuration of impurities 
(quenched impurity problem). More or less convincing physical arguments were given 
in Brout’s paper to defend that point of view but, in spite of its numerous subsequent 
applications, and in spite of Mazo’s approach to the same problem (Mazo 1963), no 
rigorous probabilistic justification of such a prescription has, to the best of our 
knowledge, ever been proposed. And since the last few years have revealed, among 
solid state theorists, a renewed interest for studying such random systems, especially 
because of the intriguing features of the spin glass problem, we have thought that a 
detailed study of Brout’s prescription within the framework of rigorous statistical 
mechanics would be necessary, both because it is, at the present time, constantly used in 
the spin glass problem (see the works quoted below), and because it is usually followed, 
to be of any practical interest in statistical physics, by rather formal procedures like the 
famous ‘ n  +O trick’ which has not been mathematically justified so far. 
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1320 P A  Vuillermot 

To be more precise, this paper will be organised as follows: in § 2 we prove, using 
strong laws of large numbers, the existence with probability one of a thermodynamical 
limit for the free energy density, considered as a random variable, of a wide class of 
classical and quantum quenched random spin systems, and we establish its relation with 
the infinite-volume free energy density evaluated from Brout's prescription. Both are 
indeed equal with probability one under some conditions which control the randomness 
in the models; our argument also provides an extension of considerations about the 
infinite-volume theory of the two-dimensional Ising-Onsager system with quenched 
impurities given by McCoy and Wu (McCoy 1970, McCoy and Wu 1971, McCoy 1972 
and references therein.) In § 3 particular mean-field random models are studied and 
their connection with the Edwards-Anderson model for spin glasses (Edwards and 
Anderson 1975, 1976) and its various classical and quantum extensions (Fischer 1975, 
Sherrington and Kirkpatrick 1975, Sherrington and Southern 1975, Thouless et a1 
1977) is pointed out. In § 4 we point out that similar arguments can be developed for 
the thermodynamic functions, and we then apply our results to the existence problem 
of phase transitions in quenched random systems with continuous internal symmetry 
groups. The last section is concerned with some remarks, comments and open prob- 
lems. 

2. Thermodynamic limit for a class of quenched random spin systems 

In what follows, the v-dimensional cubic lattice will be denoted by Z"; let A c Z" be a 
finite box whose cardinality is denoted by /Al. We shall be concerned with Ising- 
Heisenberg-Stanley spin systems defined from the Hamiltonian 

and with their various classical (and quantum) extensions like the ones proposed in the 
work by Vuillermot and Romerio (1975, especially § 4). In (2.1) we have D E N, A E R 
(external field); the Sr are, for any r E A, unit vectors in the D-dimensional Euclidean 
space RD, more precisely elements of the unit sphere SD-' whose Dth  component is 
denoted by S?; for D = 1 the model (2.1) is, as usual, identified with a spin-4 Ising 
model. The spin-spin couplings J,, are real, not necessarily identically distributed, 
independent random variables; we shall write J,,, J i  and U; for the random matrix 
(J,,,)r,r,E,,, the mean matrix (flr,)r,r,GA and the variance matrix (u$)~ ,~*~ , ,  respectively; 
these three matrices are supposed to have vanishing diagonal elements, strictly finite 
elements otherwise. The corresponding probability measure on R'A'('A'-*)'2 will be 
denoted by ( ) J ~ ;  it is supposed to be absolutely continuous with respect to the 
Lebesgue measure, namely 
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Observe that if we choose a Gaussian random matrix J A  with identically distributed 
elements of non-negative mean, in other words 

with J o  2 0, the Hamiltonian (2. l) ,  and its quantum version for D = 3, correspond to the 
Edwards-Anderson model for spin glasses (Edwards and Anderson 1975,1976) and to 
its various extensions (Fischer 1975, Sherrington and Kirkpatrick 1975, Sherrington 
and Southern 1975, Thouless et a1 1977). Such models are usually supposed to simulate 
the essential features regarding the existence and qualitative properties of the so called 
spin glass phase observed in some disordered metallic alloys like Au-Fe. Now introduce 
the free energy density 

fA(JA; A )  = 1AI-l In s ( D -  1)I.%l  SA exp( -~A(~ , i ;  A 1) (2.2) 

considered as a random variable; in (2.2), dSA denotes the usual uniform measure on 
s(D-1)lAl ~ l - ~  ? E A  S ( D - * ) ,  and the inverse temperature p = (kBT)-l has been normalised 
to one. Furthermore for a = (al, . . . , a , ) ~  Z" with ai > 0 for each i, consider the box 

A(a ) = { r  E Z" ; 0 S r, < ai ; i = 1, . . . , v} 
and write N i ( A )  for the number of disjoint translates of A ( a )  strictly included in A; we 
shall denote these translates by (Aj)F':A); let N:(A) be the number of translates of A ( a )  
whose intersection with A is non-empty (Ruelle 1969, especially chap. 2); by definition, 
N i ( A ) S N : ( A )  but we shall perform the thermodynamic limit A f Z "  in the sense of 
Van Hove, namely Ni(A)+ +CO, and then IAl- +CO, and N:(A) /N, (A)+ 1 for all a. In 
that context the first ingredient used below to prove the existence of the thermodynamic 
limit is the following inequality. 

Lemma 2.1. Suppose the random variable 

(2.3) 

exists and is finite with probability one. Then for any E > 0, a large enough and A 
sufficiently large in the sense of Van Hove, we have 

with probability one. (In (2.4) the symbol J A i  denotes the submatrix of J A  correspond- 
ing to the random bonds in Ai,) 

Proof. For a fixed configuration of impurities such that M , ( J )  is finite, (2.4) just follows 
from a slight modification of the original arguments by Griffiths (1964) and Ruelle 
(1969); such a modification is necessary to take into account the absence of any 
translational invariance in the interaction constants J,, (see Ruelle 1972, Roos 1975). 
Now from a probabilistic point of view, that means that the occurrence of the event 
M,(J)< +CO implies the occurrence of (2.4); the probability of the former is therefore 
less than or equal to the probability of the latter; thus if M,(J)<+m occurs with 
probability one, (2.4) also occurs with probability one. This proves the lemma. 
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Remarks. Technically speaking, an inequality like (2.4) is always derived first for 
interactions of strictly finite range. The general case of interactions such that M,(J)< 
+m is then obtained by a continuity argument (see the works quoted above). Now to 
have M , ( J ) <  fa with probability one, it is sufficient that, in a few particular cases, 

according to Beppo Levi’s theorem (Riesz and Nagy 1968). Other conditions involving 
the variances can be proposed as well. Very roughly speaking then one can say that the 
validity of (2.4) with probability one is only established providing there is a sufficiently 
fast decrease of the means and of the variances of the random spin couplings at large 
distances. On the other hand, observe that the inequality (2.4) does not prove the 
existence of the thermodynamic limit for fA(JA; A )  yet, except if fAl = f A ( a )  with 
probability one for each j ;  that particular situation corresponds to the case where 
J,, = J(r  - r’);  with probability one then the convergence of M , ( J )  = &zu/J(r)/ is 
ensured by the convergence of Z , , E ” ( I J ( ~ ) ~ ) J ,  and of Z , , p ( ( l J ( r ) (  - (~J (~ )~ )J , )~ )J~  accord- 
ing to our preceding remark. In the general case we are faced with however, the 
situation is not so simple any more, and since we still have to estimate the absolute value 
of the difference between fA and fAca)  to get the Van Hove limit off,, we first have to 
ensure the existence of 

for each a with probability one, and then the one of lima++oo g A ( a )  with probability one; 
because if we choose a box A(b)  with b < a,  namely bi <ai for each i, we then have the 
trivial estimate 

where each term is less than or equal to ~ / 5  for each E > 0 according to lemma (2.1) and 
our preceding assumptions when a ,  b, N,(A)  and Nb(A) are large enough; all these 
estimates clearly hold with probability one, proving thereby the existence of the Van 
Hove limit limAPz~f,, with probability one. Sufficient conditions for the existence of 
g A ( a )  and of its limit when a + +cc can be found using strong laws of large numbers in a 
way we shall now describe; we first prove a result ensuring the existence of Brout’s free 
energy, namely the average of (2.2) over all impurity configurations, which is going to 
play an important role from now on. 

Lemma 2.2. The matrix elements of Ji, and U;, being strictly finite for each j ,  the means 
(Brout’s free energy) 

e,(&,; U:,; A ) ( f ~ ,  (JA, ; A ))J,,~ (2.5) 

dl(Jil; U?,; A )= ( J A ~ ;  A >-fi,(Ji,; U:,; A ))’)J,, 

and the variances 

(2.6) 
exist and are finite. 
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Proof. We first perform a Taylor expansion around the mean matrix J",; we have 

f~,(Jh,; h)=f~,(J;,; A ) + g r a d f ~ , ( U ~ , ;  A ) *  (JA, -J;,) (2.7) 

where U,,, = ,uJ,,, + (1 -p)J;, with p E (0, 1); therefore 

for all r, rl E A ,  where ( denotes the usual Gibbs state on A,; consequently 

On the other hand we have 

(2.10) 

Substitution of (2.9) and (2.10) in (2.8) then leads to 

which proves the first statement concerning (2.5). Now starting again from (2.7) we get 

fi,<Ji,; U?&; h ) = f ~ , ( J i , ;  A)+(g rad f~ , (U~ , ;  A )  (JA,-JA,))- 0 (2.11) 

Therefore inserting (2.7) and (2.11) in (2.6), and using (2.9) again gives 

Ti,(&,; U:,; A ) s ([grad f ~ ,  (U*, ; A *,(JA~ -JiI)]2)J,,, 

(2.12) 

which proves the statement concerning (2.6). This achieves the proof. 

Remarks. The preceding proof is based on the prototype Hamiltonian (2.1); no relevant 
modifications appear, however, when considering the various classical extensions and 
the quantum version of (2.1) with D = 3 discussed at the very beginning of this section; 
all the basic estimates remain valid; that is true also for the various statements we are 
going to prove hereafter; we will therefore continue to consider (2.1) as the basis of our 
considerations in what follows. The first important connection between the random 
variable fAj and f i i  f ~ , , ~  (quenched free energy) is proved in the following lemma. 
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Lemma 2.3. Suppose the matrix elements of ai are such that the quantity 

exists and is finite. Then we have 

(2.13) 

(2 .14a)  

with probability one. 

Proof. The two-body couplings .T,+ being independent random variables by assumption, 
the set { f , ,J}~-~" '  is a family of mutually independent random variables too since 
Ai fl A, = 0 for i # j ;  on the other hand we have, starting from (2.12),  

which proves that 

3 3 2  T\ c -+<+CO; 
1=1 ] 

therefore we have 

(2.14b) 

for each a E Z" with probability one by Kolmogorov's strong law of large numbers 
(Lokve 1955, Renyi 1966, especially chap. 7). This proves ( 2 . 1 4 ~ )  with probability 
one. 

Remarks. The preceding lemma shows that we have existence of g,\(a), and of its limit 
when a ++CO with probability one once we have existence of the corresponding 
quenched quantity 

and of its limit when a + +W. This last statement concerning gA(a),q is in fact even 
sufficient to get the Van Hove limit of the quenched (Brout's) free energyf,4,q, according 
to considerations similar to the ones given above relating to the Van Hove limit off,\, 
and regarding the following lemma. 

Lemma 2.4. Under the same conditions as in lemma 2.1 we have 

(2.15) 

for any E > 0. 
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Proof. By (2.5) and (2.4) we get 

which is (2.15). 

thermodynamic limit of fA and fA,q is established in the following lemma. 
Finally the basic inequality proving the equality with probability one in the 

Lemma 2.5. Under the same conditions as in lemmas 2.1 and 2.3 we have, for any E > 0 
and every A c h' large enough in the sense of Van Hove, 

~ ~ A ( J A ;  A ) - f * , q ( J i ;  d; A)I C e (2.16) 

with probability one. 

Now the first term on the right-hand side is less than 4 3  with probability one according 
to lemma 2.1; the second is less than 4 3  with probability one according to lemma 2.3, 
and the last term is less than 4 3  according to lemma (2.4). This proves (2.16). We now 
summarise our results in the following theorem. 

Theorem 2.6. Suppose the matrix elements of J,,, J i  and U: obey the various 
conditions given above and assume that the limit 

(2.17) 

exists and is finite. Then the Van Hove limit of the quenched (Brout's) free energy 

fq(Jo; U; A ) =  lim f,,,q(Ji; U:; A )  
A P Z "  

exists and is finite; furthermore the Van Hove limit of the random free energy 

f ( J ; h ) =  lim f A ( J ; A )  
A P Z "  

exists and is finite with probability one, and we have 

fq(Jo; U ;  A ) = f ( J ;  A )  

with probability one. 
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Remarks and comments. Of course if condition (2.17) is not satisfied, the existence of fq 

is not ensured any more; however, lemma (2.5) proves anyway that if one of the two 
Van Hove limits exists (with probability one for f,,) then the other one exists too and is 
equal to the former with probability one. Sufficient conditions implying existence of 
limits like (2.17) have been studied by Roos (1975); in the next section we are going to 
exhibit models for which (2.17) holds in a trivial way. On the other hand, observe that 
our arguments also show that Brout’s prescription can only be expected to be valid in 
the limit of an infinitely large system, and still up to an exceptional set (of measure zero) 
of impurity configurations, and up to a sufficiently strong control on the randomness at 
large distances (relation (2.13)); this last condition is very natural in fact. Remark finally 
that the preceding considerations generalise those given by McCoy and Wu concerning 
the king lattice with random frozen impurities, based on the exact Onsager solution 
(McCoy 1970, McCoy and Wu 1971, McCoy 1972 and references therein). In the next 
section, we are going to consider random mean-field models to illustrate the preceding 
considerations. 

3. An example: a class of random mean-field models 

We still consider models defined by the Hamiltonian (2.1) or by its various extensions 
quoted above, but we assume that all the random couplings J,+ have the same mean, J”, 
and the same variance, g2; in other words, we suppose that every probability distribu- 
tion Prr8 in 

( )JA= n dJrr’prr’(Jrr’) 
r # r 2 E A  

is independent of the corresponding bond (r, r‘) ,  namely P,,(J,,f) = P(J,,) for each r, r’; 
important examples have already been given at the beginning of 0 2 in connection with 
the spin glass problem. Those conditions define what we shall call, in some slightly 
generalised sense, a class of random mean-field models since such a situation could also 
be generated by considering the random Hamiltonian (2.1) with Jms = J (supposed to be 
O(1Al-I) when (AI+ fa) for all r, r ’ E  A; they will play, as we shall see, the role of a 
natural substitute for the usual translational invariance of the interactions. Of course 
when all the means and all the variances have the same value, condition (2.13) and 
convergence of the series ensuring the occurrence of the event MJJ) < +a in lemma 
(2.1) (see the remark following that lemma) are not realised any more; however, it is still 
possible to use laws of large numbers to derive eventually a result similar to theorem 
2.6. Suppose that the means of the random variables J ( r )  = S U ~ ~ ~ ~ ~ ~ I J ~ + ~ ~ , ~ , ~  exist and are 
finite. To be consistent with our preceding assumptions, suppose that these means are 
the same for each r. We then have the following result. 

Lemma 3.1. Let Yo be the mean of J ( r )  = S U P ~ ~ Z ~ I J ~ + ~ , , ~ , ~  for each r;  suppose that J’O is 
O(lA(-’) when (AI + +CO; without loss of generality assume that J ’ O  = P / l A (  where .%’ is 
finite and 0(1)  when 1A1+ +a. Then we have 

with probability one. 
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Proof. We have 
theorem. 

J ' O  = 7 by assumption, thereby proving (3.1) by Beppo Levi's 

Observe that the last statement is valid without any assumption on the correspond- 

Now we can prove a result similar to theorem (2.6). We have indeed the following 
ing variances. 

theorem. 

Theorem 3.2. Let Yo be O(IA\-') when (hl++co. Then for the class of random 
mean-field models defined above, the Van Hove limit of the quenched (Brout's) free 
energy 

fq(Jo; a'; A )  = lim fA,q(Ji; U:; A )  
A f Z Y  

exists and is finite; furthermore the Van Hove limit of the random free energy 

f (J ;  A )  = lim fA(JA; A )  
A f Z "  

exists and is finite with probability one, and we have 

f(~; A ) = ~ , ( J O ;  0'; A )  

with probability one. 

Proof. From lemma (3.1) we get M,(J)<+co with probability one so that inequality 
(2.4) holds with probability one; lemma (2.4) is then still valid without any change; but 
now we have fAi.q =fA(a),q for each j in (2.15), regarding our assumption concerning 
( that proves that f, exists and is finite. Now lemma (2.2) is still valid as well, with 
T t i  = for each j ,  proving thereby that 

with probability one; since this last relation plays the role of (2.14b) for random 
mean-field models, that proves, according to lemma (2.5), that f(JA; A )  exists and is 
finite with probability one, and that (3.2) holds. This proves the theorem. 

Remarks and comments. Observe first that the considered class of random mean-field 
models contains, to the best of our knowledge, almost every current model used to 
describe the spin glass phenomenon, in particular when a Gaussian distribution is 
chosen for the P. Our results are, however, independent of the particular form of the 
probability distribution; other distributions can therefore also be chosen as well, for 
example a Laplace distribution with mean P and variance u2, namely 

- ./2'Jw, - 
J 2  
2 u  U 

P(J,,,) = - exp ( 
for O <  U < J2, or a distribution for random ferromagnets, for example 

for J,,, < 0 
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with mean f’ > 0 and variance (p)*, We are not going to examine these various models 
further, since we think that the models studied in the last section are more interesting 
anyway, compared with random mean-field models where rather unphysical volume 
dependences have to be considered, like that of J’O in the preceding considerations, to 
get any sensible result. In the next section, we are going to propose similar considera- 
tions for some thermodynamic functions, and apply them to the existence problem of 
phase transitions in magnetic (spin) glasses. 

4. Absence of mean random ordering in a class of one- and two-dimensional spin 
glasses 

In this last section, the prototype Hamiltonian will still be (2. 1)’ whose corresponding 
random free energy is given by (2.2). We are going to exhibit first a relation between the 
derivatives f6 and with respect to A, of the free energies f.\ and fA,q in the 
thermodynamic limit; the latter will be performed along the sequence of boxes 

i A m = A ( a m ) = { r E Z Y ; O ~ r  <aL, ; i= l ,  . . . ,  v} 
where the sequence 
theorem. 

is increasing in m for each i. We then have the following 

Theorem 4.1. Suppose the conditions of theorems (2.6) or (3.2) are satisfied. Then we 
have 

f ( J ;  A ) = f b ( J o ;  u’; A )  (4.1) 
with probability one for all A E R with the exception of some possible countable set 
{ A K } K ~ N .  

Proof. According to Fisher’s theorem (Fisher 1965, especially appendix A) we have 

fb(Jo; a’; A ) =  lim fimJJ:,; a?,; A )  
m-+m 

and 

f’(J; A ) =  lim f’(J,,,; A )  
m++m 

(the latter with probability one) for all A E R with the exception of a possible countable 
set {AK}KEN of non-derivability points; now according to theorem (2.6)or (3.2) we have 

f(J; A )  = fq(Jo; a*; A )  

with probability one for all A E R; that proves (4.1). 

Remark. In fact, the last combination of Fisher’s theorem and our theorems (2.6) and 
(3.2) proves more: it proves that, with probability one, the left-derivatives and the 
right-derivatives of f(J; A )  and fq(Jo; a’; A )  are equal. We are now going to be much 
more specific applying similar ideas to the existence problem of phase transitions in 
one- and two-dimensional spin glasses. From now on we shall assume a positive 
external field A > 0 in (2.1) and D 3 2; in other words, the last condition means that we 
shall consider only models with continuous internal symmetry groups (SO(D), with 
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D 2 2): our results do not apply to models with discrete internal symmetries like the one 
proposed by Sherrington and Kirkpatrick (1975). They have been announced 
elsewhere without (detailed) proofs (Vuillermot 1977). We shall assume that the three 
matrices JA, ai and J:, satisfying the assumptions of 0 2, are in addition symmetric. 
Writing then ( )A(JA; A )  for the usual Gibbs state on A, we define the random 
magnetisation mA(JA; A )  by the derivative of (2.2) with respect to A (up to a sign), 
getting 

mA(JA; A ) =  1AI-l C (S?)A(JA; A ) .  
rei\ 

And, for 2 n E N, we introduce a family of spin glass mean order parameters 

Of course, regarding recent experimental facts (Murnick et a1 1976), the right candi- 
dates to describe a pure spin glass phase should be defined by 

~ T ) ( J , , ;  A ) =  1~1- l  (s?)"(J,; A )  (4.4) 
r € A  

rather than by (4.3), with a special attention to 

G!?(J,,; A ) =  1~1-l  C (s?)'(J,; A ) .  
r s A  

However, we are going to discuss the existence of a one- and two-dimensional random 
ordering described by (4.3)rather than by (4.4), both because we have not yet found any 
useful (Bogoliubov-type) inequality to estimate the latter ones, and because the former 
ones are interesting anyway as describing a long-range order which can be considered 
as a mixture of a usual (ferro- or antiferro-) magnetic order and of a frozen-in (spin 
glass) order observed in some metallic alloys. The corresponding quenched quantities 
are then defined by 

and by 

A first interesting relation between (4.2) and (4.3) is given in the following lemma. 

Lemma 4.2. With A > 0 we have for any n E N and every impurity configuration, the 
inequalities 

o a lim inf q2;(JAm ; A ) s lim sup &;(JA_ ; A ) a lim sup mAm (JA,,,; A) I. (4.7) 
m-+m m++m m++m 

Proof. For any impurity configuration we have - d'f,,, (JAm ; A )/dA' 2 0 by concavity of 
fA, in A (thermodynamical stability); (4.2) is then a monotone non-decreasing function 
of A ; therefore mAm (JA, ; A )  2 0 whenever A > 0 since mAm (JA, ; 0 )  = 0 by symmetry; 
furthermore, we have mAm(JAm; A ) a  1 from (4.2). Those facts then imply 0 s  
q?&JAm ; A )  g 1 whenever A > 0; that proves (4.7). 
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Now consider the first Brillouin zone A,,, corresponding to A,,,, namely 
1 i ;<I i . A m = { K ~ R Y ;  K i = 2 m i / a i ;  n 'EZ;  -za,,,<n -2u,,,; I = 1 , .  ..,U} 

and suppose the random variable 

is finite with probability one; then we can assume without loss that the potential defined 
from the J,, is of strictly finite range, since every potential such that (4.8) holds can be 
approximated by finite-range potentials (Vuillermot and Romerio 1975, Ruelle 1972). 
We then have the following result. 

Lemma 4.3, Under the conditions given above on the random matrix JA,, there exists a 
constant B > 0 such that the inequality 

holds with probability one. 

Proof. The reasoning is exactly the same as in lemma (2.1): for a fixed configuration of 
impurities such that N,(J)is finite, (4.9)follows from a slight modification of the original 
arguments by Mermin and Wagner (1966), Mermin (1967), and Vuillermot and 
Romerio (1975); here again, such a modification is necessary to take into account the 
absence of any translational invariance in the J,,,. And since N,(J)< +a holds with 
probability one, (4.9) also holds with probability one. 

Now combination of the two preceding lemmas proves absence of random ordering in 
one and two dimensions, as follows. 

Theorem 4.4. Under the same conditions as in lemma (4.3) we have, for any n E N: 

lim lim inf q?L(JAm; A ) =  lim lim sup q?i(JAm; A )  = 0 (4.10) 
A 1 0  m++m A 1 0  m++m 

with probability one, whenever Y < 2. 

Proof. From lemma (4.3) we get 

l imlimsupmA,(JAm;A)=O 
~ 1 0  m++m 

with probability one, whenever v C 2. The statement (4.10) then follows from lemma 
(4.2). 

Remark. Here again, convergence of 

with probability one can be ensured by a condition on the means (Beppo Levi's 
theorem) or by a condition on the means and the variances (laws of large numbers). We 
shall not consider this problem further. 
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Now, as announced above, we are going to show the relation between the random 
quantities mA,, 4y; and the corresponding quenched parameters mA,,q and qt;,q. The 
first ingredient we will need for that purpose is a reversed Holder-Minkowski inequality 
written as follows. 

Lemma 4.5. Let (0; p )  be any measure space and let f ,  g be two positive functions in 
L ' ( 0 ;  p )  such that Jn dp(w)g(u)>O. Then for any p > 1 we have 

(4.11) 

Proof. If In dp(u) f (u)=  0, the inequality is trivial; suppose then Jn dp(u ) f (u )>  0; in 
that way, from the theorem of arithmetic and geometric means (Hardy et a1 1959) we 
get the inequality 

whenever p > 0, q > 0 and p + q = 1. A simple argument of Hardy et a1 (1959) then 
implies the reversed inequality 

whenever p > 1, which is equivalent to (4.11) 

The second ingredient is a Bogoliubov inequality for the quenched quantity mAm,, 
derived as follows. 

Lemma 4.6. Assume that the mean value, e(J), of the random variable Nu(J)  exists, is 
strictly positive and finite: then we have 

(4.12) 

Proof. We start from (4.9) and take its average with respect to ( )JA, , , ;  we then apply 
inequality (4.11) with 0 = R'Am'('Am'-*)'2 (the configuration space of impurities), p 
( ) J A , ,  f e  [mA,(JA,; A)l ,  g =",(J)K2+AB and p = 2; these successive steps give 

which achieves the proof. 

The last useful ingredient is the following lemma. 

Lemma 4.7. With A > 0 we have for any n E N the inequalities 

o s lim inf 49,., s lim sup q9i,q s Iim sup mAm.q s 1. 
m++m m++m m +m 

(4.13) 
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Proof. As for lemma (4.2) according to (4.5) and (4.6). 

We then have the following statement for the quenched order parameters. 

Theorem 4.8. Under the same conditions as in lemma 4.6 we have, for any n E N: 

(4.14) 

whenever Y s 2. 

Proof. As for theorem (4.4), we use (4.12) and (4.13). 

Remarks. As a trivial corollary of theorems (4.4) and (4.8) we have for any n E N, the 
inequality 

lim lim inf 4?L(JAm; A )  = lim lim sup q?;,q(Jim; U:,,,; A )  
,410 m++m A10 m+w 

with probability one, whenever Y S 2, which shows with theorem 4.1, that the equalities 
between the free energiesf and f, proven in the last two sections persist, in some sense, 
for some of the corresponding thermodynamic functions; similar statements can also be 
given, of course, for thermodynamic functions related to higher-order derivatives of the 
free energy. 

5. Remarks, comments and open problems 

We have shown in a rigorous way how Brout’s free energy is related to the correspond- 
ing random free energy, in the thermodynamical limit, when the control on the 
randomness is strong enough. That constitutes an a posteriori justification of Brout’s 
procedure for a class of infinite random systems at least, including the most current ones 
which are supposed to describe the spin glass phenomenon in a reasonable way. When 
the control on the randomness is not strong enough, however, there is no serious reason 
to replace f by f,, and f is the right quantity we have to deal with, as in the 
two-dimensional theory of random Ising models proposed by McCoy and Wu. And 
even in the case where theorems (2.6) or (3.2) are valid, the equality between f andf, is 
only true for almost all impurity configurations. Such a precise statement, though rather 
mathematical, should be considered very seriously by physicists: the fact that an 
exceptional set of impurity configurations for which f#f, may exist is certainly 
responsible for dramatic changes in the critical properties of the corresponding systems, 
as it is the case for the McCoy and Wu model; in a model where f would be equal to f, 
everywhere, the notion of randomness would be useless, the critical properties similar 
to those of the non-random model described by f,, and the ultimate comparison with 
experiments presumably very poor and disappointing. Observe also that, whereas 
thermodynamical quantities are probability-one objects in the preceding sense, the 
same statement does not persist any more for non-thermodynamical quantities like the 
spin-spin correlations functions; the McCoy and Wu model once more gives an explicit 
example of that situation. Throughout we have dealt with independent random 
variables, but the extension of our results to the dependent case is an interesting open 
problem. Likewise, a serious discussion of the quantities (4.4) rather than (4.3) would 
be useful. 
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